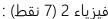
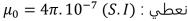
المادة : العلوم الفيزيائية	فرض محروس رقم 4	الثانوية التأهياية وادي الذهب				
المستوى : الأولى علوم تجريبية		مدينة أصبلة				
مدة الإنجاز : ساعتين		الدورة الثانية				
يؤخذ بعين اعتبار تنظيم ورقة تحرر الفرض وينصح بإعطاء التعابير الحرفية قبل إنجاز التطبيقات العددية						

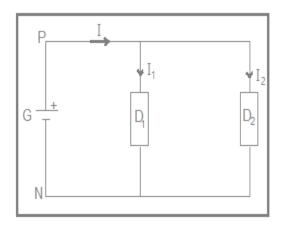

الفيزياء : 13 نقطة

فيزياء 1 (6نقط) :

نعتبر الدارة الكهربائية الممثلة جانبه والمكونة من :


- . $U_{PN} = 10V$ مولد كهربائي يبقى التوتر بين قطبيه ثابتا ويساوي -
- و $R_1=20\Omega$ موصلين أوميين D_2 و D_2 مقاومتهما على التوالي $R_2=10~\Omega$. $R_2=10~\Omega$
 - 1-عرف مفعول جول . ثم اعط تعبير القدرة المبددة بمفعول جول في الموصل الاومى .(1ن)
- 2- بتطبيق قانون أوم أجد قيمة كل من I_1 و I_2 شدة التيار المارين على التوالي في كل من D_1 و D_2 . (1ن)
 - (0,5) . I استنتج شدة التيار الرئيسي I
 - 4-احسب P_{ext} القدرة الكهربائية الممنوحة من طرف المولد G واستنتج W_{ext} الطاقة الكهربائية التي يمنحها المولد خلال نصف ساعة . (1,5)

5-احسب احسب الطاقة الحرارية المبددة بمفعول جول في الموصلين D_1 و D_2 خلال نصف ساعة بطريقتين مختلفتين . D_2 (2ن)


لتحديديها نقترح الطريقة التالية :

N=1 وعدد لفاته L=8 cm وعدد لفاته L=8 cm وعدد لفاته L=8 cm ممغنطة يصبح محوره (xx') متعامدا مع إبرة ممغنطة قابلة للدوران حول محور رأسي في مركز الملف اللولبي C=1 ذي لفات غير متصلة. انظر الشكل جانبه .

نمرر في الملف اللولبي تيارا شدته $M=45^\circ$ ، فتنحرف الأبرة الممغطة بزاوية $lpha=45^\circ$ نحو اليمين (الشرق) . 1-حدد منحى واتجاه متجهة المجال المغنطيسي \overline{B} المحدث من طرف الملف اللولبي عند النقطة D .

- 2-حدد الوجه الشمالي والوجه الجنوبي للملف .
- 3-باستعمال إحدى القاعدتين إستنتج منحى التيار الذي يجتاز الملف)من اليسار إلى اليمين أو العكس).
 - . 0 المعنطيسي أ $ec{B}$ المحدث من طرف الملف اللولبي عند النقطة -0
 - $B = \mu_0 \frac{N.I}{I}$: نذکر أن
 - . 0 استنتج مميزات متجهة المجال المغنطيسي $ec{B}$ المحدث من طرف الملف اللولبي عند النقطة-
- . α مثل المتجهات $\overrightarrow{B_H}$ و \overrightarrow{B} و $\overrightarrow{B_T}$ متجهة المجال المغنطيسي الكلي المحدث في النقطة 0 وزاوية الانحراف $B_H=2,7.10^{-7}~T$. بين أن شدة المركبة الأفقية للمجال المغنطيسي الأرضي في النقطة 0 هي . $T=0,1.10^{-7}~T$.

الكيمياء (7 نقط):

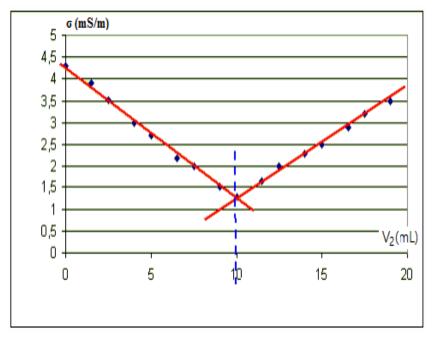
يهدف هذا االتمرين الى تحديد التكيز المولي C_0 لمحلول تجاري لهيدروكسيد الصوديوم $(Na^+_{(aq)} + HO^-_{(aq)})$ مجهول ، نأخذ حجما $V_1 = V_1$ مجهول ، نأخذ حجما $V_1 = V_1$ من المحلول التجاري $V_1 = V_1$ من المحلول المخفف $V_1 = V_1$ و نضعه في كأس ونغمر فيه خلية قياس المواصلة .

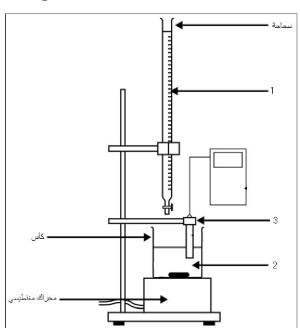
. $C_2=0,1\ mol.\ L^{-1}$ تركيزه بواسطة محلول مائي لحمض الكلوريدريك ننجز المعايرة بواسطة محلول مائي لحمض الكلوريدريك ننجز المعايرة بواسطة محلول مائي لحمض الكلوريدريك نحصل على المنحنى المبين في الشكل أسفله :

1-يمثل الشكل أسفة العدة التجريبة لإنجاز هذه المعايرة . اعط أسماء الارقام 1 و 2 و 3 .

2-أكتب معادلو التفاعل الحاصل خلال هذه المعايرة محددا نوعه .

3-بما ذا تفسر تناقص الموصلية قبل التكافؤ ؟ وبماذا تفسر تزايدها بعد يالتكافؤ ؟


 $G=rac{s}{L}\sigma$: عطي العلاقة V_{2E} . احسب مواصلة المحلول عند التكافؤ . نعطي العلاقة V_{2E} . مع : S=2 cm^2 . مع : S=2


5-أتمم الجدول الوصّفي أسفله . ثم أوجد علاقة التكافؤ .

\rightarrow			معادلة التفاعل		
كميلت المادة بالمول			التقدم	حالة المجموعة	
			وفير	0	البدئية
			وفير	x	الوسيطية
			وفير	x_E	عند التكافؤ

6-باستعمال علاقة التكافؤ حدد التركيز C_1 للمحلول S_1 . ثم استنتج التركيز المولي C_0 للمحلول التجاري S_0 . S_0 .

 $\gamma = \frac{c_0}{c_1}$: انذكر أن معامل التخفيف يكتب



تصحيح الفرض المحروس رقم 4

فيزياء 1 :

1-مفعول جول هو المفعول الحراري الناتج عن مور التيار الكهربائي في موصل کھربائی .

: تعبير
$$P_{I}$$
 في الموصل الاومي $P_{I}=U_{AB}.I=R.I^{2}$

: I_2 و I_1 صن I_2 عنديد قيمة كل من $I_1 = \frac{U_{PN}}{R_1}$: ومنه $U_1 = U_{PN} = R_1.I_1$: قانون أوم $I_1 = \frac{10}{20} = 0,5~A$ ت.ع : $I_2 = \frac{U_{PN}}{R_2}$: ومنه : $U_2 = U_{PN} = R_2.I_2$ ومنه : $I_1 = \frac{10}{10} = 1~A$ ت.ع : ومنه : $I_1 = \frac{10}{10} = 1~A$

ت.ع:
$$I_1 = \frac{10}{10} = 1 \, A$$
 :

3-استنتاج *I*

 $I = I_1 + I_2$: قانون العقد

I = 0.5 + 1 = 1.5 A : ت.ع

 $: P_{ext}$ حساب-4

 $P_{ext} = 10 \times 1,5 = 15 W$ ت.ع : ت.ع $P_{ext} = U_{PN}.I$

 $:W_{ext}$ استنتاج

 $W_{ext} = 15 \times 0.5 \times 3600 = 27.10^3 J = 27kJ$: ق.ع $W_{ext} = P_{ext}.\Delta t$

 $:D_2$ و D_1 الطاقة المبددة في الموصلين D_1 و

الطريقة الأولى :

مبدأ انحفاظ الطاقة :

: الطاقة الممنوحة من طرف المولد تتحول كليا الى طاقة حرارية في الموصلين D_2 و D_3 نكتب $W_{ext} = W_I = W_{I1} + W_{I2} = 27 \ kJ$

الطريقة الثانية:

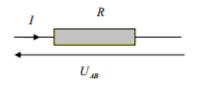
 D_1 الطاقة المبددة في

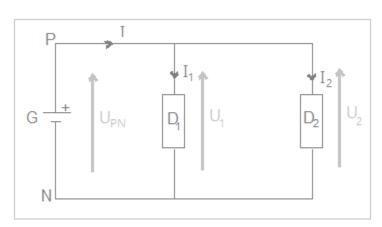
 $W_{I1} = 10 \times 0.5 \times 0.5 \times 3600 = 9.10^3 J = 9 \, kJ$: قرع $W_{I1} = U_1 \cdot I_1 \cdot \Delta t$

 D_2 الطاقة المبددة في

 $W_{I2} = 10 \times 1 \times 0.5 \times 3600 = 18.10^3 J = 18 \, kJ$: ت.ع $W_{I2} = U_2 . \, I_2 . \, \Delta t$

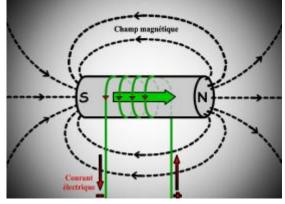
 $:D_2$ و D_1 الطاقة المبددة في الطاقة


 $W_I = W_{I1} + W_{I2} = 9 + 18 = 27 \, kJ$


يمكن استعمال طريقة أخرى :

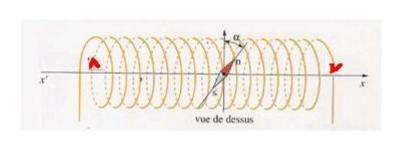
 $R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$: المقاومة المكافئة للموصلين الاوميين تكتب

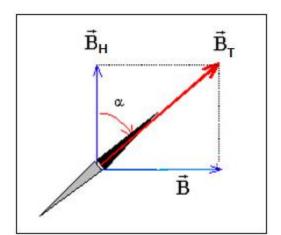
 $W_J=R_{eq}.I^2.\Delta t=rac{R_1.R_2}{R_1+R_2}.I^2\Delta t$: الطاقة المبددةتكتب


$$W_J = \frac{10 \times 20}{10 + 20} \times (1.5)^2 \times 30 \times 60 = 27.10^3 J = 27kJ$$
 : ق.ع

فيزياء 2:

1-بما أن الابرة تتجه نحو الغرب ، فإن اتجاه متجهة المجال هو محور الملف أي المحور 'xx والمنحى هو نحو اليمين اي نحو Ox .




2-تحديد الوجه الشمالي نحو اليمين والجنوبي نحو اليسار: انظر الشكل جانبه

3- باستعمال قاعدة اليد اليمنى منحى التيار من اليمين نحو اليسار .

: \vec{B} حساب شدة المجال المغنطيسي -4

$$B = \mu_0 \frac{N.I}{L} \Longrightarrow B = 4\pi. \, 10^{-7} \times \frac{20 \times 84, 9.10^{-3}}{8.10^{-2}} = 2,7.10^{-5} \, T$$

6-تمثيل المتجهات $\overrightarrow{B_H}$ و \overrightarrow{B} و $\overrightarrow{B_H}$ باستعمال السلم : $1cm \to 1{,}35.10^{-5}\,T$ أنظر الشكل .

7-نستعمل العلاقة :

$$tan\alpha = \frac{B}{B_H} \Rightarrow B_H = \frac{B}{tan\alpha} \Rightarrow B_H = \frac{2,7.10^{-5}}{tan(45^\circ)}$$

= 2,7.10⁻⁵ T

الكيمياء:

1-أسماء العدة التجريبية :

(المعاير) لمحلول (S_1) لهيدروكسيد الصوديوم (المعاير) \leftarrow 2 المحلول (S_2) لحمض الكلوريدريك (المعاير)

3 ← خلية قياس المواصلة

2-معادلة التفاعل:

$$H_3O^+_{(aq)} + HO^-_{(aq)} \to 2H_2O_{(l)}$$

نوع التفاعل حمض-قاعدة.

3-يحتوي الكأس في البداية على أيونات $HO^-_{(aq)}$ و $Na^+_{(aq)}$ عند إضافة المحلول المعايَر يتم التفاعل بين $HO^-_{(aq)}$ و بالتالي تعوض أيونات $C\ell^-_{(aq)}$ أيونات $HO^-_{(aq)}$. بما أن موصلية $HO^-_{(aq)}$ أكبر من موصلية $C\ell^-_{(aq)}$ ، مما يفسر تناقص موصلية المحلول ت قبل التكافؤ.

. بعد التكافؤ يتوقف التفاعل فيتم تراكم الأيونات $\mathcal{C}\ell^-_{(aq)}$ و $\mathcal{H}_3\mathcal{O}^+_{(aq)}$ في الكأس مما يفسر تزايد المواصلة

. $V_2=10\,mL$ عليه مبيانيا بتفاصع المستقيمين في نقطة أفصولها هو $\sigma=1,75\,mS.m^{-1}$ عند نقطة التكافؤ موصلية المحلول مبيانيا هي :

مواصلة المحلول هي :

$$G = \frac{S}{L}\sigma \Rightarrow G = 1,75.10^{-3} \times \frac{4.10^{-4}}{2.10^{-2}} = 3,5.10^{-5} S$$

5-إتمام الجدول الوصفي :

$H_3O^+_{(aq)}$	$+ HO^{-}_{(a)}$	$q) \rightarrow$	$2H_2O_{(l)}$	معادلة التفاعل	
كميلت المادة بالمول				التقدم	حالة المجموعة
$C_2.V_2$	$C_1.V_1$		وفير	0	البدئية
$C_2.V_2$	$C_1.V_1$		وفير	x	الوسيطية
$C_2.V_{2E}-x_E$	$C_1.V_1-x_E$		وفير	x_E	عند التكافؤ

عند التكافؤ يكون الخليط في الكأس تناسبيا (أي ستيكيومتري) نكتب :

$$\begin{vmatrix} C_2 \cdot V_{2E} - x_E = 0 \\ C_1 \cdot V_1 - x_E = 0 \end{vmatrix} \Rightarrow C_1 \cdot V_1 = C_2 \cdot V_{2E} = x_E$$

 $C_1.\,V_1 = C_2.\,V_{2E}$: علاقة التكافؤ تكتب

: *C*₁ تحدید

 $C_1=rac{C_2.V_{2E}}{V_1} \Rightarrow C_1=rac{0.1 imes 10}{20}=5.10^{-2}~mol.~L^{-1}$ من علاقة التكافؤ نحصل على: $C_0=100 imes 5.~10^{-2}=5~mol.~L^{-1}$ تعلم أن : $\gamma=rac{C_0}{C_0}=7.~C_1$ ومنه : $\gamma=rac{C_0}{C_0}=7.~C_1$ تعلم أن :