Exercice 1:(5pts)

1°. Résoudre dans \mathbb{R} les équations :

$$2x^2 + x - 1 = 0$$
 ; $2x^2 - 2\sqrt{2} + 1 = 0$

2°. Résoudre dans $\mathbb R$ l'inéquation : $2x^2 + x - 1 > 0$

 $2\sin^2(x) - 2\sqrt{2}\sin(x) + 1 = 0$ 3° . Résoudre dans \mathbb{R} l'équation :

4°. Résoudre dans \mathbb{R}^2 le système suivant en utilisant la méthode du déterminant : $\begin{cases} -x + 2y = 3 \\ 3x - 4y = -5 \end{cases}$

Exercice 2:(6pts)

Soit x un nombre réel, on pose : $A(x) = 4\cos^2(x) + \sin^4(x)$

1°. Montrer que pour tout x de \mathbb{R} : $A(x) = (2 - \sin^2(x))^2$

 2° . Calculer: A(0); $A(\frac{\pi}{2})$

3°. a°. Déterminer l'abscisse curvilingne principale du point M d'abscisse curvilingne $\frac{-2005\pi}{3}$ b°. Déduire la valeur de $A(\frac{-2005\pi}{2})$

4°. a°. Montrer que : $A(x) = \left(1 + \frac{1}{1 + tan^2(x)}\right)^2$ b°. Soit $x \in [0; \frac{\pi}{2}[$, Calculer A(x) sachant que tan(x) = 1

Exercice 3:(5pts)

Soit x un nombre réel.

1°. Calculer : $sin\left(\frac{52\pi}{3}\right)$; $cos\left(\frac{-39\pi}{2}\right)$; $tan\left(\frac{-413\pi}{4}\right)$ 2°. Simplifier le nombre : $B=cos\left(3x+\frac{41\pi}{2}\right)+sin\left(3x+305\pi\right)+cos\left(3x+\frac{19\pi}{2}\right)$

3°. Déduire la valeur de : $B\left(\frac{\pi}{9}\right)$

Exercice 4:(4pts)_

on pose: $F(x) = \sqrt{2}\cos^2(x) - (\sqrt{2} + 1)\cos(x) + 1$ Soit $x \in \mathbb{R}$;

1°. Montrer que : $F(x) = (\cos(x) - 1) \left(\sqrt{2}\cos(x) - 1 \right)$

2°. Résoudre dans $[-\pi; \pi]$ l'équation F(x) = 0

3°. Etudier le signe de F(x) sur $[-\pi, \pi]$ (dresser le tableau de signe de F(x)

4°. Déduire l'ensemble des solutions de l'inéquation $F(x) \leq 0$

Exercice 5:(2pts)__

Résoudre dans] $-\pi;\pi[$ l'inéquation : $\frac{2sin^2(x)+sin(x)-1}{4cos^2(x)-1}\geqslant 0$

Pr: Khalid CHIDA