<u>Données</u>: $M(Ni) = 58.7 \text{ g.mol}^{-1}$; $F = 96500 \text{ C.mol}^{-1}$.

On désire recouvrir un objet métallique par une couche de nickel. Pour cela on réalise le dispositif de la figure 1 en annexe. L'une des deux électrodes est en nickel, l'électrolyte est une solution de chlorure de nickel (Ni²⁺, 2Cl⁻).

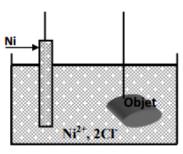


Figure 1

- 1) Reproduire et compléter le schéma de la figure 1:
- en ajoutant un générateur G convenablement branchée. (0,25 pt)
- en indiquant la cathode et l'anode. (0,5 pt)
- 2) a- Ecrire la demi équation qui se produit à l'anode et celle qui se produit à la cathode en précisant s'il s'agit d'une réduction ou d'une oxydation. (Les ions Cl⁻ ne réagissent pas au cours de l'électrolyse). (1 pt)
- b. En déduire l'équation de la réaction d'électrolyse. (0,5 pt)
- c- Préciser si cette réaction est spontanée ou imposée. Justifier. (0,25 pt)
- On dépose sur l'objet une masse de nickel m_{Ni}=0,587g.
- a- Calculer la quantité de matière de nickel n_{Ni} déposée. (0,5 pt)
- b- En déduire la quantité d'électricité Q mise en jeu pendant l'électrolyse. (0,5 pt)
- c- Sachant que la durée de l'électrolyse a durée 6 min 26s.

Calculer l'intensité I du courant délivré par le générateur. (0,5 pt)

4) Préciser si les propositions suivantes sont vraies ou fausses en justifiant la réponse. (1 pt)

<u>Proposition n°1</u>: la concentration de la solution en ions Ni²⁺ croit pendant cette électrolyse.

Proposition n°2 : La durée d'électrolyse augmente si l'intensité du courant diminue.

Physique 1

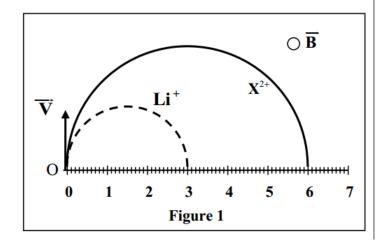
I°) Un projectile est lancé à l'instant t=0 d'un point A du haut d'un tour de 100m de hauteur avec une vitesse v_0 inclinée d'un angle α = 60° avec l'horizontale.

- 1°) a- Etablir les équations horaires du mouvement dans le repère (O, i, j). b-Déduire l'équation cartésienne de la trajectoire.
- 2°) Calculer la hauteur maximale ymax atteinte par le projectile.
- 3°) Déterminer les cordonnées du point d'impact P avec le sol.

On donne : II v_0 II=200ms⁻¹.

- II°) Un satellite géostationnaire est en mouvement autour de la terre.
- 1°) Faire un schéma et représenter la force exercée par la terre sur le satellite.
- 2°) En appliquant la relation fondamentale de la dynamique, montrer que le mouvement du satellite est uniforme.
- 3°) Donner l'expression de la vitesse du satellite.
- 4°) a- Donner l'expression de la période du satellite.
 - c- Etablir la 3ème loi de Kepler.

Physique 2


Deux particules chargées \mathbf{Li}^+ et \mathbf{X}^{2+} sont introduites en un point O, avec la même vitesse initiale \overline{V} , dans un espace où règne un champ magnétique uniforme \overline{B} , perpendiculaire au vecteur \overline{V} .

 $q_{\scriptscriptstyle X}$ et $m_{\scriptscriptstyle X}$ sont respectivement la charge électrique et la masse de la particule $\mathbf{X}^{\scriptscriptstyle 2+}$.

On considère que Li^+ et X^{2+} sont soumises seulement à la force de Lorentz. .

Données:

- La vitesse initiale : V=10⁵ m.s⁻¹;
- L'intensité du champ magnétique : B=0,5T;
- La charge élémentaire: e=1,6.10⁻¹⁹ C;
- La masse de Li^+ : $m_{Li} = 6,015u$;
- $-1u=1,66.10^{-27} \text{ kg}$;
- La figure 1 représente les trajectoires des deux particules dans le champ \overline{B} .

- Déterminer la direction, le sens et l'intensité du vecteur force de Lorentz exercée sur la particule Li⁺ au point O.
- **2.** Préciser le sens du vecteur \overline{B} en le représentant par \odot s'il est vers l'avant ou par \otimes s'il est vers l'arrière.
- 3. En appliquant la deuxième loi de Newton dans un référentiel galiléen, montrer que le mouvement de l'ion \mathbf{Li}^+ est uniforme et de trajectoire circulaire de rayon $R_{Li} = \frac{m_{Li} \cdot V}{e \cdot R}$.
- **4.** En exploitant les données de la figure 1, déterminer le rapport $\frac{R_X}{R_{Li}}$; avec R_X le rayon de la trajectoire de la particule \mathbf{X}^{2+} .
- **5.** Sachant que la particule \mathbf{X}^{2+} se trouve parmi les trois ions proposés avec leurs masses dans le tableau ci-dessous, identifier \mathbf{X}^{2+} en justifiant la réponse.

Ion	$^{24}_{12}{ m Mg}^{2+}$	$^{26}_{12} \text{Mg}^{2+}$	$_{20}^{40}\mathrm{Ca}^{2^{+}}$
Masse (u)	23,985	25,983	39,952